Projet CECI
CECI
CECI Est une Carte Interactive
Accueil
Contribuer
Article
Logiciel
Projet
Auteur
Institution
Rechercher
Par catégorie
Par mots clés
×
Choisissez une langue
Français
English
Proposer une modification
Annuler la modification
Demander le retrait de cet article
Deep knowledge tracing and engagement with MOOCs
Auteurs
Kritphong Mongkhonvanit
Klint Kanopka
David Lang
Institutions
Stanford University
Année :
2019
Lieu de publication de l'article :
Résumé de l'article
MOOCs and online courses have notoriously high attrition [1]. Onechallenge is that it can be difficult to tell if students fail to completebecause of disinterest or because of course difficulty. Utilizing aDeep Knowledge Tracing framework, we account for student en-gagement by including course interaction covariates. With these,we find that we can predict a student’s next item response withover 88% accuracy. Using these predictions, targeted interventionscan be offered to students and targeted improvements can be madeto courses. In particular, this approach would allow for gating ofcontent until a student has reasonable likelihood of succeeding.KEYWORDSMOOCS, neural networks, item response, video interactionsACM Reference Format:Kritphong Mongkhonvanit, Klint Kanopka, and David Lang. 2019. DeepKnowledge Tracing and Engagement with MOOCs. In The 9th InternationalLearning Analytics Knowledge Conference (LAK19), March 4–8, 2019, Tempe,AZ, USA.ACM, NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3303772.3303830
Mots-clés
Massive open online course,Item response theory,Attrition (website),
Caractéristiques
Caractéristiques
level
primary
secondary
higher education
open
other level
step
description
diagnostic
prediction
prescription
other step
environment
distance
face-to-face
hybrid
MOOC
other environment
target
learners
teachers
institutions
researchers
other target
Envoyer
×
Annuler vos modifications ?
Oui
Non
Suppression
×
Pourquoi voulez-vous que cet article soit retiré ?
Demander le retrait de cet article